博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
l2正则化
阅读量:6790 次
发布时间:2019-06-26

本文共 512 字,大约阅读时间需要 1 分钟。

在中,无论是分类还是回归,都可能存在由于特征过多而导致的过拟合问题。当然解决的办法有

 

  (1)减少特征,留取最重要的特征。

  (2)惩罚不重要的特征的权重。

 

但是通常情况下,我们不知道应该惩罚哪些特征的权重取值。通过可以防止过拟合,提高泛化能力。

 

先来看看L2正则化方法。对于之前梯度下降讲到的损失函数来说,在代价函数后面加上一个正则化项,得到

 

    

 

注意是从1开始的。对其求偏导后得到

 

    

 

然后得到梯度下降的表达式如下

 

     

 

注意当0的时候,可以认为的值为0。可以看出没有正则化时,系数的权重为1,而现在明显

 

       

 

也就是说权值进行了衰减。那么为什么权值衰减就能防止overfitting呢 ?

 

首先,我们要知道一个法则-奥卡姆剃刀,用更少的东西做更多事。从某种意义上说,更小的权值就意味着模型的复杂度更低,对数据的拟合更好。接下来,引用上的解释。

 

(1)当权值系数更大时,会过拟合。

 

    

 

(2)在PRML中,正则化就是通过对模型的参数设定一个先验来防止过拟合。

 

     

 

     试想一下,在上图中,如果不加正则化项,那么最优参数对应的等高线离中心点的距离可能会更近,加入正

     则化项后使得训练出的参数对应的等高线离中心点的距离不会太近,也不会太远。从而避免了过拟合。

你可能感兴趣的文章
简单回溯,最少步数
查看>>
LeetCode – Refresh – Palindrome Partitioning II
查看>>
mysql线上数据库单表超过200G的处理
查看>>
生成静态页相关
查看>>
OC中ARC forbids explicit message send of release错误
查看>>
J2SE 学习记录
查看>>
VS静态编译
查看>>
个人作业——Alpha项目测试
查看>>
laravel之laravel-admin安装
查看>>
浅谈C#中的接口和抽象类
查看>>
Jmeter实现webservice的接口测试
查看>>
jmeter用BeanShell调用jar包对HTTP请求中的参数进行MD5加密
查看>>
判断页数及切换
查看>>
GraphQL ---02 GraphQL和C#结合的实战项目
查看>>
Vmware虚拟机三种网络模式详解
查看>>
【已解决】如图,说我磁盘不够,看到var目录下有的个隐藏文件夹占了46G,不知道怎么删除...
查看>>
[LintCode] O(1)检测2的幂次
查看>>
BZOJ3295:[CQOI2011]动态逆序对——题解
查看>>
Office Online简介
查看>>
房天下爬虫
查看>>